A universal non-quasitriangular quantization of the Heisenberg group

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27 L369
(http://iopscience.iop.org/0305-4470/27/11/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 03:48

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A universal non-quasitriangular quantization of the Heisenberg group

A Ballesteros $\dagger \S$, E Celeghini \uparrow, F J Herranz \dagger, M A del Olmo \dagger and M Santander \dagger
\dagger Departamento de Física Teórica, Universidad de Valladolid, E-47011 Valladolid, Spain \ddagger Dipartimento di Fisica and INFN, Sezione di Firenze, Largo E Fermi, 2, 50125-Firenze, Italy
§ Departamento de Física Aplicada III, E U Politécnica. E-09006 Burgos, Spain

Received 14 February 1994

Abstract

A new universal R-matrix for the quantum Heisenberg algebra $\mathfrak{h}(1)_{q}$ is obtained by imposing the analyticity in the deformation parameter. Despite the non-quasitriangularity of this Hopf algebra, the quantum group induced from it coincides with the quasitriangular deformation already known.

Recall that a quasitriangular Hopf algebra [1] is a pair $(\mathcal{A}, \mathcal{R})$ where \mathcal{A} is a Hopf algebra and $\mathcal{R} \in \mathcal{A} \otimes \mathcal{A}$ is invertible and verifies

$$
\begin{array}{ll}
\sigma \circ \Delta h=\mathcal{R}(\Delta h) \mathcal{R}^{-1} & \forall h \in \mathcal{A} \\
(\Delta \otimes \mathrm{id}) \mathcal{R}=\mathcal{R}_{13} \mathcal{R}_{23} & (\mathrm{id} \otimes \Delta) \mathcal{R}=\mathcal{R}_{13} \mathcal{R}_{12} \tag{1b}
\end{array}
$$

where, if $\mathcal{R}=\sum_{i} a_{i} \otimes b_{i}$, we denote $\mathcal{R}_{12} \equiv \sum_{i} a_{i} \otimes b_{i} \otimes 1, \mathcal{R}_{13} \equiv \sum_{i} a_{i} \otimes 1 \otimes b_{i}$, $\mathcal{R}_{23} \equiv \sum_{i} 1 \otimes a_{i} \otimes b_{i}$ and σ is the flip operator $\sigma(x \otimes y)=(y \otimes x)$. If \mathcal{A} is a quasitriangular Hopf algebra, then \mathcal{R} is called a 'universal' \mathcal{R}-matrix and satisfies the quantum Yang-Baxter equation (QYBE)

$$
\begin{equation*}
\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}=\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12} . \tag{2}
\end{equation*}
$$

Given a matrix representation $\rho: \mathcal{A} \rightarrow \operatorname{Mat}(n, \mathbb{C})$, the FRT approach [2] to quantum groups is based on an R-matrix taken as $R=(\rho \otimes \rho)(\mathcal{R})$. The matrix entries $t_{i j}(i, j=$ $1, \ldots, n$) of a general 'quantum group' element T satisfy the commutation relations

$$
\begin{equation*}
R T_{1} T_{2}=T_{2} T_{1} R \tag{3}
\end{equation*}
$$

where $T=\left(t_{i j}\right), T_{1}=T \otimes 1_{n}$ and $T_{2}=1_{n} \otimes T$. The Yang-Baxter (YB) condition ensures the associativity of the (non-commutative) algebra of functions on the quantum group $F u n\left(G_{q}\right)$ generated by the $t_{i j}$. It also provides a straightforward way to obtain \mathcal{A} as the dual of $F u n\left(G_{q}\right)$ by using the $L^{ \pm}$matrices $[1,3]$.

This letter shows the non-unicity of the R-matrix for the quantum Heisenberg algebra $\mathfrak{h}(1)_{q}$. There are two essentially different R-matrices, one of them quasitriangular [4,5] and the other, presented in this letter, non-quasitriangular. It is therefore natural to study whether
$F u n\left(G_{q}\right)$ can be derived with the aid of the FRT prescription using this non-quasitriangular R-matrix. We found this to be the case and, moreover, its associated quantum Heisenberg group coincides with the one given in [4,6] (see [7] for a characterization of all possible quantizations of this group).

The essential point of the approach presented here is the assumption that the R-matrix and all the theory is analytical in the quantum parameter $z(=\log q)$. Let us consider an R-matrix as a formal power series in z with coefficients in $U \mathfrak{h}(1) \otimes U \mathfrak{h}(1)$

$$
\begin{equation*}
R=\mathrm{e}^{z R_{\mathrm{t}}}+\sum_{i=1}^{\infty} z^{i}\left(\mathrm{e}^{2 R_{i+1}}-1\right) \tag{4}
\end{equation*}
$$

Provided the coproduct Δ is also expanded in terms of z, we can try to solve (la) order by order in the deformation parameter and obtain the explicit form of the R_{i} components.

The quantum Heisenberg algebra $h(1)_{q}[4]$ is defined by the commutation relations

$$
\begin{equation*}
\left[A, A^{\dagger}\right]=(\sinh z H) / z \quad[A, H]=0 \quad\left[A^{\dagger}, H\right]=0 \tag{5}
\end{equation*}
$$

which are consistent with the Hopf homomorphisms

$$
\begin{align*}
& \Delta(H)=1 \otimes H+H \otimes \mathrm{l} \\
& \Delta\left(A^{\dagger}\right)=\mathrm{e}^{-(z / 2) H} \otimes A^{\dagger}+A^{\dagger} \otimes \mathrm{e}^{(z / 2) H} \tag{6}\\
& \Delta(A)=\mathrm{e}^{-(z / 2) H} \otimes A+A \otimes \mathrm{e}^{(z / 2) H} \\
& \epsilon(X)=0 \quad \gamma(X)=-\mathrm{e}^{(z / 2) H} X \mathrm{e}^{-(z / 2) H}=-X \quad X \in\left\{A, A^{\dagger}, H\right\} \tag{7}
\end{align*}
$$

If we assume the ansatz (4) for the R-matrix, the first order of (1a) leads to

$$
\begin{equation*}
\left[R_{1}, 1 \otimes X+X \otimes 1\right]=H \otimes X-X \otimes H \tag{8}
\end{equation*}
$$

Equation (8) has two different solutions:

$$
\begin{equation*}
R_{1}=A \otimes A^{\dagger}-A^{\dagger} \otimes A \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{1}^{\prime}=H \otimes A^{\dagger} A+A^{\dagger} A \otimes H-2 A \otimes A^{\dagger} \tag{10}
\end{equation*}
$$

Note that the general R_{1}-matrix will be a linear combination of (9) and (10). Applying our procedure to the latter, we should obtain the quasitriangular R-matrix presented in [4,5]. So, we restrict ourselves in the following to (9). Note that, as expected, R_{1} is a classical r-matrix for the algebra $\mathfrak{h}(1)$ (it fulfils the modified classical YB equation). The study of the r-matrices for this algebra has been given in [6] where it is shown that (9) provides the (essentially unique) Poisson-Lie quantization of $H(1)$.

The second order leads to the condition

$$
\begin{equation*}
\left[R_{2}, 1 \otimes X+X \otimes 1\right]=0 \tag{11}
\end{equation*}
$$

for any generator X. This requirement is obviously fulfilled if $R_{2}=0$ and we shall adopt this solution.

The third order originates the following equation for R_{3}
$\left[R_{3}, 1 \otimes X+X \otimes 1\right]=\frac{1}{12}\left[R_{1},\left[R_{1},\left[R_{1}, 1 \otimes X+X \otimes 1\right]\right]\right]-\frac{1}{8}\left[R_{1}, H^{2} \otimes X+X \otimes H^{2}\right]$

$$
\begin{equation*}
-\frac{1}{8}\left[R_{1}, H^{3} \otimes X+X \otimes H^{3}\right] . \tag{12}
\end{equation*}
$$

A solution for (12) is given by

$$
\begin{equation*}
R_{3}=-R_{1}\left(\frac{1}{12} H \otimes H+\frac{1}{8}\left(1 \otimes H^{2}+H^{2} \otimes 1\right)\right) . \tag{13}
\end{equation*}
$$

Note that R_{3} exhibits a remarkable property: it depends only on R_{1} and H. We.put forward this dependence by supposing that R can be written as

$$
\begin{equation*}
R=\exp \left(z R_{1} f(H, z)\right) \tag{14}
\end{equation*}
$$

Under this assumption, the condition ($1 a$) can be solved in general (from now on, we shall not write the z-dependence of the function f). Explicitly,

$$
\begin{align*}
R \Delta X R^{-1}= & \exp \left(z R_{1} f(H)\right) \Delta X \exp \left(-z R_{\mathrm{I}} f(H)\right) \\
= & \Delta X+z f(H)\left[R_{1}, \Delta X\right]+(1 / 2!) z^{2} f(H)^{2}\left[R_{\mathbf{1}},\left[R_{1}, \Delta X\right]\right]+\cdots \\
& +(1 / n!) z^{n} f(H)^{n}\left[R_{\mathrm{t}},\left[\ldots\left[R_{1}, \Delta X\right]\right]^{n} \ldots\right]+\cdots \tag{15}
\end{align*}
$$

For $X \equiv A$ and $X \equiv A^{\dagger}$, we need to obtain the brackets in (15)
$\left[R_{1}, \Delta X\right]=\left[A \otimes A^{\dagger}-A^{\dagger} \otimes A, \mathrm{e}^{-(z / 2) H} \otimes X+X \otimes \mathrm{e}^{(z / 2) H}\right]$

$$
\begin{equation*}
=\frac{1}{z} \sinh (z H) \otimes X \mathrm{e}^{(z / 2) H}-X \mathrm{e}^{-(z / 2) H} \otimes \frac{1}{z} \sinh (z H) \tag{16}
\end{equation*}
$$

$\left[R_{1},\left[R_{1}, \Delta X\right]\right]=-\frac{1}{z^{2}}(\sinh z H \otimes \sinh z H) \Delta X$
$\left[R_{1},\left[R_{1},\left[R_{1}, \Delta X\right]\right]\right]=-\frac{1}{z^{2}}(\sinh z H \otimes \sinh z H)\left[R_{1}, \Delta X\right]$.
In general, a recurrence method gives for $2 n$ and $2 n+1$ iterates, respectively

$$
\begin{align*}
& {\left[R_{1},\left[\ldots\left[R_{1}, \Delta X\right]\right]^{2 n)} \ldots\right]=\frac{(-1)^{n}}{z^{2 n}}(\sinh z H \otimes \sinh z H)^{n} \Delta X} \tag{19}\\
& {\left[R_{1},\left[\ldots\left[R_{1}, \Delta X\right]\right]^{2 n+1)} \ldots\right]=\frac{(-1)^{n}}{z^{2 n+1}}(\sinh z H \otimes \sinh z H)^{n} z\left[R_{1}, \Delta X\right]} \tag{20}
\end{align*}
$$

Now, expression (15) can be written as follows

$$
\begin{align*}
& \exp \left(z R_{1} f(H)\right) \Delta X \exp \left(-z R_{1} f(H)\right)=\sum_{l=0}^{\infty} \frac{(-1)^{l}}{(2 l)!}[f(H)]^{2 l}(\sinh z H \otimes \sinh z H)^{l} \Delta X \\
&+\sum_{j=0}^{\infty} \frac{(-1)^{j}}{(2 j+1)!}[f(H)]^{2 j+1}(\sinh z H \otimes \sinh z H)^{j} z\left[R_{1}, \Delta X\right] \\
&= \cos (\sqrt{\sinh z H \otimes \sinh z H} f(H)) \Delta X \\
&+\frac{\sin (\sqrt{\sinh z H \otimes \sinh z H} f(H))}{\sqrt{\sinh z H \otimes \sinh z H}} z\left[R_{1}, \Delta X\right] \tag{21a}\\
&= \alpha(H) \Delta X+\beta(H) z\left[R_{1}, \Delta X\right] \tag{21b}
\end{align*}
$$

where $\alpha(H)$ and $\beta(H)$ are to be determined. We recall that (21) has to provide the same effect on ΔX as the flip operator σ. Explicitly, for $X \neq H$, we have

$$
\begin{align*}
\sigma \circ \Delta X & =\mathrm{e}^{(z / 2) H} \otimes X+X \otimes \mathrm{e}^{-(z / 2) H} \\
& =(X \otimes 1)\left(1 \otimes \mathrm{e}^{-(z / 2) H}\right)+\left(\mathrm{e}^{(z / 2) H} \otimes 1\right)(1 \otimes X) . \tag{22}
\end{align*}
$$

If we impose (22) to coincide with (21b), we obtain the following system of equations for α and β :

$$
\begin{align*}
& \alpha(H)\left(\mathrm{e}^{-(z / 2) H} \otimes 1\right)+\beta(H)\left(\sinh z H \otimes \mathrm{e}^{(z / 2) H}\right)=\left(\mathrm{e}^{(z / 2) H} \otimes 1\right) \\
& \alpha(H)\left(1 \otimes \mathrm{e}^{(z / 2) H}\right)-\beta(H)\left(\mathrm{e}^{-(z / 2) H} \otimes \sinh z H\right)=\left(1 \otimes \mathrm{e}^{-(z / 2) H}\right) \tag{23}
\end{align*}
$$

These equations can be solved and lead to the solution

$$
\begin{align*}
& \alpha(H)=\frac{1 \otimes 1+\mathrm{e}^{-z H} \otimes \mathrm{e}^{z H}}{1 \otimes \mathrm{e}^{z H}+\mathrm{e}^{-z H} \otimes \mathrm{I}}=\frac{\mathrm{e}^{(z / 2) H} \otimes \mathrm{e}^{-(z / 2) H}+\mathrm{e}^{-(z / 2) H} \otimes \mathrm{e}^{(z / 2) H}}{\cosh ((z / 2) \Delta H)} \tag{24}\\
& \beta(H)=\frac{2}{\mathrm{e}^{(z / 2) H} \otimes \mathrm{e}^{(z / 2) H}+\mathrm{e}^{-(z / 2) H} \otimes \mathrm{e}^{-(z / 2) H}}=\frac{1}{\cosh ((z / 2) \Delta H)} .
\end{align*}
$$

For the sake of consistency between (21) and (24), it can be easily checked that $\alpha(H)^{2}+[\sinh (z H) \otimes \sinh (z H)] \beta(H)^{2}=1$. Finally, from these two equations, we deduce the final form of the function $f(H)$ which reads

$$
\begin{equation*}
f(H, z)=\frac{1}{\sqrt{\sinh z H \otimes \sinh z H}} \sin ^{-1}\left(\frac{\sqrt{\sinh z H \otimes \sinh z H}}{\cosh ((z / 2) \Delta H)}\right) \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
f(H, z)=\frac{1}{\sqrt{\sinh z H \otimes \sinh z H}} \cos ^{-1}\left(2 \frac{\mathrm{e}^{(z / 2) H} \otimes \mathrm{e}^{-(z / 2) H}+\mathrm{e}^{-(z / 2) H} \otimes \mathrm{e}^{(z / 2) H}}{\cosh ((z / 2) \Delta H)}\right) . \tag{26}
\end{equation*}
$$

A power series expansion of $f(H, z)$ in terms of z leads to (4) with R_{1} and R_{3} given by (9) and (13), respectively. The R-matrix (14) so obtained does not fulfil the QYBE equation as can be easily shown by the second-order expansion series on z.

Let us now consider a three-dimensional representation of the Heisenberg group

$$
T=\left(\begin{array}{ccc}
1 & \theta & a_{1} \tag{27}\\
0 & 1 & a_{2} \\
0 & 0 & 1
\end{array}\right)
$$

The corresponding quantum group is the (non-commutative) Hopf algebra of functions generated by the matrix entries $t_{i j}$. Their coproduct is induced from the group multiplication $T \dot{\otimes} T$

$$
\begin{align*}
& \Delta(\theta)=1 \otimes \theta+\theta \otimes 1 \\
& \Delta\left(a_{1}\right)=1 \otimes a_{1}+a_{1} \otimes 1+\theta \otimes a_{2} \tag{28}\\
& \Delta\left(a_{2}\right)=1 \otimes a_{2}+a_{2} \otimes 1 .
\end{align*}
$$

Co-unit and antipode are derived from the unit matrix and from T^{-1}, respectively (see [4]).

The fundamental representation of the quantum algebra (5) is

$$
D(H)=\left(\begin{array}{ccc}
0 & 0 & 1 \tag{29}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad D\left(A^{\dagger}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad D(A)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

If we realize the R-matrix (13) in terms of (28), we find that only the linear term in z is left (see also [8])

$$
D(R)=1_{3}+z\left[D(A) \otimes D\left(A^{\dagger}\right)-D\left(A^{\dagger}\right) \otimes D(A)\right]=\left(\begin{array}{ccc}
1_{3} & z D\left(A^{\dagger}\right) & 0 \tag{30}\\
0 & 1_{3} & -z D(A) \\
0 & 0 & 1_{3}
\end{array}\right) .
$$

This R-matrix, together with (3) and (27), provides

$$
\begin{equation*}
\left[\theta, a_{1}\right]=z \theta \quad\left[\theta, a_{2}\right]=0 \quad\left[a_{1}, a_{2}\right]=-z a_{2} . \tag{31}
\end{equation*}
$$

This algebra verifies the Jacobi identity and coincides (up to a change in the deformation parameter $z=w / 2$) with the quantum Heisenberg group obtained from a quasitriangular Hopf algebra in [4]. In that paper, a number operator N was needed in order to obtain a universal \mathcal{R}-matrix in the same way as its classical counterpart n had been introduced to generate the same \mathcal{R}-matrix from the coboundary Poisson-Lie structure, studied in [6]. On the other hand, the duality between relations (28) and (31) and the quantum Heisenberg algebra (5) has been given in [9]. Finally, note that the universality of R allows the FRT construction for any finite-dimensional representation of the Heisenberg group.

This work has been partially supported by a DGICYT project (PB92-0255) from the Ministerio de Educación y Ciencia de España and by an Acción Integrada Hispano-Italiana (HI-059).

References

[1] Drinfield V G 1986 Proc. Int. Congr. of Mathematics (Berkeley MRSI)
[2] Reshetikhin N Yu, Takhtadzhyan L A and Faddeev L D 1990 Leningrad Math. J. 1193
[3] Burroughs N 1990 Commun. Math. Phys. 13391
[4] Celeghini E, Giachetti R, Sorace E and Tarlini M 1991 J. Math. Phys. 321155
[5] Celeghini E, Giachetti R, Sorace E and Tarlini M Contractions of quantum groups (Lecture Notes in Mathematics 1510) (Berlin: Springer) p 221
[6] Bonechi F, Giachetti R, Sorace E and Tarlini M 1993 Deformation quantization of the Heisenberg group Preprint DFF
[7] Hussin V, Lauzon A and Rideau G 1994 R-matrix method for Heisenberg quantum groups Preprint CRM1917, Montréal
[8] Kuperschmidt B A 1993 J. Phys. A: Math. Gen. 26 L929
[9] Bonechi F, Celeghini E, Giachetti R, Pereñ C M, Sorace E and Tarlini M J. Phys. A: Math. Gen. to be published

